

Deployment Mechanisms for High-Packing-Efficiency One-Meter Reflectarray Antenna (OMERA)

Jonathan F. Sauder, Manan Arya, Nacer Chahat, Ellen Thiel, Sean Dunphy, Mengjan Shi, Greg Agnes, Tom Cwik AIAA Scitech, 6th Spacecraft Structures

2018 was the year of:

High Gain CubeSat Reflector Deployments

ISARA Dep. Jan 2018

MarCO Dep. May 2018

RainCube Dep. July 2018

Deployable, High Gain Reflectors for CubeSats

Key Categories: Mesh, Reflectarray, Inflatable and High Strain Composite

Reflectarray MarCO

Inflatable Antenna Babuscia, et. al.

High Strain Composite Reynolds, Murphy, Banik

Reflectarrays

ISARA, MarCO, and what's next?

OMERA Requirements: 1x1 Meter in 6U

Ka-band (35.75 Ghz) Reflectarray Antenna

Feed Design:

 Absolute deployment accuracy of 0.4 mm in X, Y, and Z, including thermal.

- Consumes less than 2U
- Deploys from 230 mm to 667 mm
- First mode greater than 0.1Hz

Panel Design:

- RMS error of 0.4 mm
- Translates to angles of:
 - $\theta_{A} = \pm 0.03$
 - $\theta_{\rm B} = \pm 0.04$
 - $\theta_{\rm C} = \pm 0.10$

 Deploy from 358mm x 201mm solar panel "bonus space" to 910mm by 1050mm.

First Feed: Quick, Fast, and Simple

Decouple deployment and position

Early Prototype: Modified Spring Design to Check Tapes

Tape and Feed Connection

Key Component to Separate Deployment from Positioning

Basic Concept: Cable Hexapod

Quartz Cable Placement is Critical

Hand Crank Deployment

Motorized Deployment

A Closer Look

Panel Development

Attaching Panels:

- Panels arrive from vendor
- Panels aligned in bonding fixture
- Hinges are inserted into bonding fixture
- One set of six panels are bonded at a time

Hinge Development

Hinge Mechanism:

- Right hand/left hand torsion spring deploys hinge while balancing out-of-axis torque.
- Each hinge line (except root), has one positioning hinge with set screw in the middle.
- Ball-tipped fine-thread set screw (200 μm pitch) contacts steel insert

Hinge Attachment Features:

- Interface between panel and hinge body is bonded.
- Located on panel by a set of pinned joints.
- Held flush to panel via screws and inserts

Testbed Panels

Testing Hinge Design and Bonding Process

2 pulleys fixed in position

4 pulleys on 3 carts free to move along a track

Panels are 3.3 meters below offload system

Deployment Repeatability and RF Testing

For Feed Deployment

For Panel Deployment

To Measure Accuracy

Panel Deployment Repeatability

Panel Surface as Test

RMS error of 0.345 mm

Feed Deployment Repeatability

Repeatability was great until fully secured in last stow

RF Testing

Panels and Feed were deployed by hand in the range

Performance Matched Simulations at 48.0 dBi @ 35.75 Ghz

Future Steps for Panels

- While 0.345 mm RMS error is within target, target value is 0.2 mm RMS error to account of on orbit disturbances.
- To improve:
 - Work with vendor to develop flatter panels
 - Improve bonding process to accommodate for remaining warp in the panels
 - Manufacture hinges with tighter tolerances to improve precision.
 - Current hinges were built to 0.1 mm tolerance.

Future Steps for Feed

- Feed had correct repeatability until fully loaded into the stowed position.
- To improve:
 - Redesign the feed collar to enable greater compliance.
 - Add encoders to the tapes to precisely control position of the tapes, not just the motors.
 - Switch from twisted quartz thread to a unidirectional cable.

Authors:

Jonathan F. Sauder, Manan Arya, Nacer Chahat, Ellen Thiel, Sean Dunphy, Mengjan Shi, Greg Agnes, Tom Cwik

Special thanks to:

Brian Merrill (Spectrum Marine and Model Services), Michel William, and Tyler Luchik who assisted in building the antenna, and Dr. Jefferson Harrell who performed the RF tests.

